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Context

* Chartered to survey the subject of what 1s
already known and to create an integrated
strategy for future solar system exploration

» Key themes i1dentified:
— The First Billion Years of Solar System History
— Volatiles and Organics: The Stuff of Life
— The Origin and Evolution of Habitable Worlds
— Processes: How Planets Work
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Context

* Example missions were 1dentified to address
these themes

— Some are doable with today’s technology

— Some require near term technology

— Some require significant advances in technology
* The exploration of the solar system is a

technically challengmg and expensive
endeavor.
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Deep Impact Mission

* Catch up with Comet Tempel 1 on July 4,
2005

* Send 370 kg probe to impact surface

* Observes and records data from material
dissipated into space and fresh material
exposed on surface

» Mission duration 19 months

— Science portion 1-2 days
— Data return 30 days
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Dawn Mission

 Visiting 2 protoplanets in search of the role
of size and water in determining the
evolution of the planets

* 11 month orbital period around each of
Vesta and Ceres
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Landers/Probes

e Landers and Probes Outer Planets
Multiprobes

are used for extreme
environments

— Temperature —
Venus

— Radiation -
IO/Europa

— Pressure — Jupiter

— Shock — Deep Space
2 (Mars)
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Landers/Probes

* Dumb landing/
decending systems —
Air Bags: Mars
Pathfinder, Parachute: - Huygens - Titan

Huygens, Galileo Probe

e Smart landing/
descending systems —
Rocket Descent: Mars
98, Viking, Mars
Science Laboratory
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Landers/Probes

 [anders and Probes are
extremely volume, power Smart Lander
and mass constrained

* Usually have to relay data
to mothership such as an
orbiter

* Small buffers for science
data storage and computer
processing

 Must survive environmental
requirements
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Neptune & Triton Missions
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@ Flyby Missions

« Large flyby velocities

— data acquired very rapidly

— Little time for data
compression during
acquisition

— Attitude control for
maneuvering during science
acquisition is computer
intensive

Europa Flyby

e On-board data storage
required to hold data until it
can be returned after flyby
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Orbiters

* Long one way light time

* Data return limited by
telecommunications state- Neptune Orbiter
of-the-art

— State of the art gets about 1
Mb/s from 6 AU

* Deep Space Network a

shared resource

« Further distances severely
limit rate requiring more o
data stored on board until it
can be returned
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@ On-Board Autonomy

* Entry-Descent-Landing requires intense
computer resources
— Extensive data taking and reconciliation by

computer algonthms require fast memory
access times

» Rendezvous and docking requires tight
control loops for attitude control with
stored

* Interferometry requires precise tracking
and position determination
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SIM LISA

e — 5,000,000 ke ——————n

Saacoccafl #3
Spacecraft 52

Spacecraft #1
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Environmental Factors

* Solar Flares and Galactic Cosmic Ray
environments create havoc for memory data
retention and data integrity

— SEEs and SEUs drive computer system reset rates and
mass memory system EDAC requirements

* Missions to the Jovian systems require radiation
tolerance or hardness

— 100 Krad tolerable
— 1 Mrad much better

— Example — FLASH for mass memory on Europa
Orbiter required approximately 4 kg Tungsten/Copper
shielding per 2 Gbit

11/4/02 NVM Symposium 18



APL

Jupiter Orbiters

Io olcano Qrbiter

 Jovian system of high
import to planetary
science community

 Environment harsh for
memory systems

« Large operations teams
required to effectively
compensate for on-
board anomaly

Jupiter Polar Orbiter
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' « The Europa Orbiter total dose environment is
6 H harsh compared to current experience
' 3.3 Mrad o
= Over 30 day Europa — At Europa an astronaut inside an EVA
T . Science mission ?(’2';'5%’ suit receives a lethal dose every 12
o 5 In Europa orbit ( I .
- minutes
o e  The Europa Orbiter must operate with high
s , 3.2 Mrad i reliability during the 30 day mission
o Over 1-2 years » |
8 in Jupiter orbit ) — Science objectives
0 before EOI ] ) ) .
c . — Achieve quarantine orbit
5 |
& Impact
° 10-12 year — High technology, high risk, high cost
o 2 duration [ ics d I d ok
0year Adyear . — & electronics development to reduce ris
duratig_n duration S
MEO
| Teleco H
Sats
Intelsat Plapned Missjons
Iridium T {
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Environmental Factors

* Many mass memory chips only available
from commercial manufacturing lines
— Lose insight into manufacturing processes
— Not consistent from lot to lot
— No traceability to investigate failures

— Less stringent screening and life testing
requirements
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Data Storage Technologies JPL

A Small Historical Perspective
[tem MGN CAS MPF | X2000

Cap. 1.8Gb 2.5Gb 2Mb 2Gb

Media Tape DRAM |EPROM | Flash

Qty 1/3 Mile| 640 - 80 20
Pwr 35W, 12W, TW, 3W,
28V 28V 5,12V 3.3V
Mass 22kg 17kg 4kg 220g
1.7kg
| . (shield)
Size 16x12x8 | 16x8x7 |6U VME | 3U PCI
(inches) (inches) | (2 cards)
VOLATILE N Y N N
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Data Storage Technologies
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< Cassini SSR

17 kg, 12W, Volatile

B 2000 NVMS

220g (unshielded), 3W,
. NONVOLATILE
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Prior Art: GLL & MGN Recorder JPL
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Major Drivers

* Mass/Density

— Space missions are constrained by current
launch capabilities — what can be launched

— Defined by orbital mechanics
— Can directly effect flight time to target
— Always severely mass constrained

— The less engineering systems weigh, the more
science for the dollars

— Orbiting bodies or landing masses require
significant amounts of infrastructure mass
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Major Drivers

e Power

— Solar power drops off as square of distant from
sun |

— Nuclear power required for some missions

— Therefore, deep space missions require low
power electronics

* Volume
— Constrained by launch vehicle shroud
— Ultimately translates to mass or performance

11/4/02 NVM Symposium 27



e . JPL
Major Drivers

* Speed

— Access time extremely important to get best
performance from processors

» Radiation/SEE performance

— Jupiter deemed important target, need radiation
tolerant/hard electronics

— Deep space missions need to endure GCR and
solar flares
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Future Needs

 Consistent Space Product
— High quality
— Proven life
— Predictable behavior

e Low Cost

— Mass production
— Pin-for-pin replacements for current product
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Future Needs

» Super Dense Volatile Memories
— Fast access time
— Radiation hardened

— Keep pace with computer processor improvements

* Dense Non-Volatile Memories
— Prime science data storage
— Low power

— Large read/write cycles for long mission engineering
data storage

— Radiation hardened
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